ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Anthony Busigin, S. K. Sood, K. M. Kalyanam
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 179-185
Technical Paper | Tritium System | doi.org/10.13182/FST91-A29688
Articles are hosted by Taylor and Francis Online.
A new high-temperature isotopic exchange (HITEX) fuel processing loop (FPL) design for the International Thermonuclear Experimental Reactor (ITER) is proposed. The new design has advantages over previous ones that were based on catalytic oxidation or decomposition of impurities; it eliminates the need for impurity oxidation and electrolysis of DTO and does not rely on complicated catalytic decomposition reactions. In the HITEX design, tritium is exchanged out of impurities such as tritiated methane, ammonia, and water by swamping with H2 and isotopically equilibrating the mixture in a high-temperature reactor. The reactor consists of a horizontal tube with an axial platinum metal hot wire operated at a temperature of 1173 K. The walls of the reactor are cooled to near room temperature to minimize permeation. Downstream from the reactor is a Pd/Ag permeator to separate out hydrogen and impurities. The separated H2/HT stream is sent to the isotope separation system for tritium recovery.