ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sergei A. Zimin
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 144-163
Technical Paper | Shielding | doi.org/10.13182/FST91-A29686
Articles are hosted by Taylor and Francis Online.
The radiation shield for the toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) is optimized using one-dimensional calculations. The ANISN code with the VITAMIN-C group constant library and MAKLIB-IV response library are used for the calculations. Two ways of evaluating the total heating in the TF coils are presented. These methods, being standard approaches, use the results of both one-dimensional shielding calculations and three-dimensional calculations f or the neutron wall load distribution on the reactor first wall, and they seem to be useful f or future work on ITER and ITER-like projects such as the Next European Torus (NET), Fusion Experimental Reactor (FER), and Compact Ignition Tokamak (CIT). The main results of the optimization and the total heating evaluation are compared with U.S. and European team results. The local nuclear responses in the TF coils remain within the prescribed limits everywhere. The total nuclear heating in the ITER TF coils is within the 50-kW limit in the physics phase using either the U.S. or the USSR blanket concept. The total nuclear heating in the ITER TF coils during the technology phase is expected to be ∼20% lower than that in the physics phase.