ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Sergei A. Zimin
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 144-163
Technical Paper | Shielding | doi.org/10.13182/FST91-A29686
Articles are hosted by Taylor and Francis Online.
The radiation shield for the toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) is optimized using one-dimensional calculations. The ANISN code with the VITAMIN-C group constant library and MAKLIB-IV response library are used for the calculations. Two ways of evaluating the total heating in the TF coils are presented. These methods, being standard approaches, use the results of both one-dimensional shielding calculations and three-dimensional calculations f or the neutron wall load distribution on the reactor first wall, and they seem to be useful f or future work on ITER and ITER-like projects such as the Next European Torus (NET), Fusion Experimental Reactor (FER), and Compact Ignition Tokamak (CIT). The main results of the optimization and the total heating evaluation are compared with U.S. and European team results. The local nuclear responses in the TF coils remain within the prescribed limits everywhere. The total nuclear heating in the ITER TF coils is within the 50-kW limit in the physics phase using either the U.S. or the USSR blanket concept. The total nuclear heating in the ITER TF coils during the technology phase is expected to be ∼20% lower than that in the physics phase.