ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
R. A. Krakowski
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 121-143
Technical Paper | Fusion Reactor | doi.org/10.13182/FST91-A29685
Articles are hosted by Taylor and Francis Online.
Two decades of fusion reactor conceptual design have led to a clearer definition of an “attractive” fusion power plant. Recent advances in commercial reactor designs have pushed in the direction of smaller, more compact systems while stressing material and configurational choices that amplify safety and environmental (S&E) advantages (e.g., inherent or passive safety and significantly reduced long-term radioactive waste). When intelligently amalgamated, compactness and favorable S&E characteristics can enable fusion power to be competitive. The history of fusion reactor conceptual design, the constituents of an attractive fusion end product, and recent progress infusion reactor studies as embodied in the TITAN reversed-field pinch and the more recent and ongoing Advanced Reactor Innovations and Evaluation Study (ARIES) advanced tokamak reactor designs, are reviewed. The future for magnetic fusion energy can be bright if the right physics, technology, and materials research and development (R&D) choices are made now. An important ingredient in this “right choice” is design simplification and subsystem combination to achieve requisite levels of reliability and ease of maintenance, while ensuring competitive energy costs and acceptable S&E features. Significant departures from the “conventional” (i.e., the current R&D direction) tokamak physics embodiment are required to achieve these goals.