ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael Bittner, Andreas Meister, Detlef Ohms, Elief Paffrath, Dietmar Rahner, Rainer Schwierz, Dieter Seeliger, Klaus Wiesener, Peter Wüstner
Fusion Science and Technology | Volume 20 | Number 3 | November 1991 | Pages 334-348
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29674
Articles are hosted by Taylor and Francis Online.
Two successive long-duration experiments for the observation of deuteron-deuteron (d-d) fusion neutrons emanating from a massive palladium slab are described. The experimental effects observed are discussed through the use of a simple plasmalike model for the time dependence of fusion reactions in condensed matter, which is modified for a plane geometry. This results in a plasma fusion rate of . While plasmalike behavior leading to observable d-d fusion reaction intensities occurs temporarily, under nonequilibrium conditions of electrolytic charging only, for permanently occurring d-d molecular fusion in the fully loaded palladium slab from the experiments, only an upper limit can be set, which is given by Λd-d < 10-26 s-1.