ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
CFS working with NVIDIA, Siemens on SPARC digital twin
Commonwealth Fusion Systems, a fusion firm headquartered in Devens, Mass., is collaborating with California-based computing infrastructure company NVIDIA and Germany-based technology conglomerate Siemens to develop a digital twin of its SPARC fusion machine. The cooperative work among the companies will focus on applying artificial intelligence and data- and project-management tools as the SPARC digital twin is developed.
Kathryn A. McCarthy
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 425-432
Technical Paper | Blanket Engineering | doi.org/10.13182/FST91-A29660
Articles are hosted by Taylor and Francis Online.
A computationally efficient method for analyzing magnetohydrodynamic (MHD) flow is used to investigate flow in a channel with a high aspect ratio that is mechanically strengthened by the use of anchor links. The method used is the core flow approximation, which neglects inertial and viscous effects and the induced magnetic field. This reduces the governing equations to a set of linear equations. These assumptions are often valid at the high magnetic fields characteristic of a fusion reactor. The slotted duct shape is used to reduce the MHD pressure drop, which may be excessive in liquid-metal blankets. It may be necessary, however, to use anchor links in the design, and these anchor links introduce an additional pressure drop. The analysis shows that the size is more important than the conductivity of the anchor link. Depending on the size of the anchor link, the pressure drop is shown to increase by as much as 100% for the geometries analyzed.