ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Shigeru Sudo, Tomosumi Baba, Masahiro Kanno, Shigeki Saka
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 387-398
Technical Paper | Experimental Device | doi.org/10.13182/FST91-A29655
Articles are hosted by Taylor and Francis Online.
A two-stage pellet injector for Heliotron-E is constructed and tested. The aim is to increase pellet velocity for more flexible density profile control of the Heliotron-E plasma and also to conduct a pellet ablation study using a wider range of pellet velocity. The pellet velocity is limited to ∼1.4 km/s in the current six-pellet injector at Heliotron-E. The fundamental operation is simulated with the Quickgun code. The experimental results generally agree well (within 80 to 90%) with the code calculations. By using a newly developed high-pressure fast valve, a hydrogen pellet velocity of 3.2 km/s has been achieved without a supportive shell or sabot to protect the pellet, although more tests are needed to confirm whether pellets can reliably be accelerated to this high speed without fracturing. The dependence of the pellet velocity and breech pressure on the pump tube fill pressure is studied. The results show that the fill pressure is an important parameter. The effect of the clearance between the piston and the pump tube wall on the pellet velocity is also investigated. The wear and damage of the piston caused by the compressing propellant gas are investigated. It is shown that changes on the piston surface when hydrogen is used for fill gas are different from the case of helium.