ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
N. Giordano, A. S. Aricö, V. Antonucci
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 105-107
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29648
Articles are hosted by Taylor and Francis Online.
The formation of palladium deuteride during the electrolysis of heavy water is analyzed. This process is accompanied by thermal effects, such as local overheating, which can induce restructuring of the electrodes. The overheating depends on the size of the palladium-deuterium (Pd-D) clusters and the time scale for heat conduction. With the radius of the octahedral site occupied by deuterium in the Pd-D face-centered-cubic (fcc) lattice being similar or greater than the penetration depth of the temperature field for a single reaction of palladium with deuterium, Ruckenstein and Petty's equation has been applied in the calculation of the local overheating. A value of ∼2350°C for the maximum average temperature rise has been calculated for the Pd-D cluster formation. Similar calculations for the TiD2 fcc structure show that overheating probably depends also on the kinetics of D2 absorption. The presence of these phenomena may play some role in the reproducibility of cold fusion experiments.