ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Govinda Rajan, U. Kamachi Mudali, R. K. Dayal, P. Rodriguez
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 100-104
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29647
Articles are hosted by Taylor and Francis Online.
Following recent announcements of the occurrence of nuclear fusion between deuterium nuclei in palladium near room temperature in an electrolysis cell, explanations for the incredibly large increase in fusion probability have been sought. Two pointers seem to emerge: the high density of deuterium ions sustained by the cathode material and, more importantly, the substantial screening effect produced by the conduction electrons in the host metal, which reduces the D+-D+ barrier. This latter mechanism appears to be a function of the concentration of the D+ ions. It is well known that an electric field applied across a metallic bar produces a large concentration gradient of interstitial ions along the length of the bar. For hydrogen (or deuterium) in metals, ordinary electric fields can produce a concentration gradient of ∼1020 between the ends. Thus, with the simultaneous application of an electric field along the length of the cathode in an electrolysis experiment, an elegant method of producing a nonequilibrium deuterium concentration becomes available. Hence, it is reasonable to expect an enhancement in the nuclear reactions occurring in the cathode in such an experiment. To investigate this phenomenon, a two-compartment electrolysis cell is built. A titanium rod suitably shaped for the application of the simultaneous electric field is employed as the cathode. Electrolysis of heavy water is conducted for several hours. Neutron counters are employed for continuous detection of neutrons. With the size of electrode used and for electric fields of up to 20 mV/cm, neither a significant neutron emission nor any rise in the tritium level in the heavy water are detected. Faint traces of autoradiographs are, however, observed for the cathode.