ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Talbot A. Chubb, Scott R. Chubb
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 93-99
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29646
Articles are hosted by Taylor and Francis Online.
A theory of solid-state fusion based on the interaction between D+ and 4He++ ion band states within a host lattice is presented. Formation of ion band-state deuterium is thermodynamically favored when lattice strain energy is greater than the incremental chemical potential of the band state. The key fusion step is a coalescence fluctuation that converts a two-fold occupation state of electrostatic zero-point-motion size into a state of nuclear dimensions. Rates are calculated using the Fermi Golden Rule. Fusion energy is shared between band-state members and subsequently transferred to the lattice.