ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Martha H. Redi, Samuel A. Cohen
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 48-57
Technical Paper | Fusion Reactor | doi.org/10.13182/FST91-A29642
Articles are hosted by Taylor and Francis Online.
The buildup of helium ash has been studied in a series of simulations with the BALDUR transport code in the proposed International Thermonuclear Experimental Reactor (ITER) experiment at low density = 8.3 × 1019/m−3. Sustained ignition is found to be possible only for RHe < 0.5 → 0.9, with lower values required at lower edge densities. Using radially dependent thermal diffusivities that were scaled from Joint European Torus (JET) values, the effects of particle transport coefficients and edge recycling on helium poisoning of ignition are studied. A sustained ignition is obtained when the exhaust of helium from the edge plasma is allowed to exceed 10% of the helium flux into the edge plasma from the core plasma, and the ratio of particle (helium ion) to thermal diffusivities, D/χ, is > ¼. The simulations include the effects of sawtooth oscillations, radiative as well as conductive energy loss channels, and density profile variations.