ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Vito Renda, Loris Papa
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 40-47
Technical Paper | Divertor System | doi.org/10.13182/FST91-A29641
Articles are hosted by Taylor and Francis Online.
The performance and limits of a divertor plate for the Next European Torus (NET) are assessed. The design is a plasma-facing component that integrates the divertor plates and the inboard first wall in a monoblock panel. It is made of stainless steel poloidal U-tubes embedded in a copper matrix and protected by a carbon-fiber composite graphite armor. The thermal and thermomechanical behavior are analyzed in the high thermal flux zone taking into account the actual surface heating, which ranges from 5 to 10 MW/m2. A simplified preliminary analysis assesses the water flow and the component geometry in accordance with the system and material data foreseen for NET. It is shown that if the surface temperature of the armor is limited to 1273 K, the graphite thickness must be limited to 7.5 mm. Detailed thermal and mechanical finite element analyses, performed by the CASTEM 2000 code, show that the cooling tubes remain just below the creep regime temperature. The allowable limits prescribed by international standards are met, and the component's lifetime is 3000 cycles.