ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Oyama, S. Yamaguchi, K. Tsuda, C. Konno, Y. Ikeda, H. Maekawa, T. Nakamura, K. Porges, E. Bennett
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1955-1960
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29628
Articles are hosted by Taylor and Francis Online.
Two types of heterogeneous blanket systems were tested to estimate a design margin for neutronic calculations. One system simulates a multi-layered beryllium/lithium-oxide blanket, and the other does water coolant channels in a Li2O blanket. For both systems the tritium production rate (TPR), reaction rate and neutron spectrum were measured. Those measurements were performed by NE213 and Li-glass scintillators, Li-foil and Li2O zonal block scheme for TPR, activation foils for reaction rate and proton recoil proportional counters for spectrum. In addition, gamma-ray heating was measured by spectrum weighting function technique using NE213 scintillator. Precise distribution measurements near the material boundary were performed especially by directly stacking the irradiation samples in the test blanket region to minimize a perturbation for the measurement.