ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Oyama, S. Yamaguchi, K. Tsuda, C. Konno, Y. Ikeda, H. Maekawa, T. Nakamura, K. Porges, E. Bennett
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1955-1960
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29628
Articles are hosted by Taylor and Francis Online.
Two types of heterogeneous blanket systems were tested to estimate a design margin for neutronic calculations. One system simulates a multi-layered beryllium/lithium-oxide blanket, and the other does water coolant channels in a Li2O blanket. For both systems the tritium production rate (TPR), reaction rate and neutron spectrum were measured. Those measurements were performed by NE213 and Li-glass scintillators, Li-foil and Li2O zonal block scheme for TPR, activation foils for reaction rate and proton recoil proportional counters for spectrum. In addition, gamma-ray heating was measured by spectrum weighting function technique using NE213 scintillator. Precise distribution measurements near the material boundary were performed especially by directly stacking the irradiation samples in the test blanket region to minimize a perturbation for the measurement.