ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Richard Smith, John J. King
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1925-1930
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29623
Articles are hosted by Taylor and Francis Online.
Neutron multiplication occurs in beryllium because of the high (n, 2n) cross section. On the basis of calculations made using microscopic nuclear data, multiplication in a beryllium blanket should improve the efficiency of a tritium breeder. Previous experiments have indicated that the net multiplication is too low for beryllium to be an effective neutron multiplier. It seemed appropriate to make a further study of the multiplication of 14-MeV neutrons in bulk beryllium, utilizing the superior isotropy and flat energy response of the manganese bath. In the manganese bath method a 14-MeV neutron source is placed at the center of a large tank containing an aqueous solution of MnSO4. With a beryllium sample surrounding the neutron source in the sample chamber, the neutrons first multiply in beryllium and produce in the manganese bath an activity proportional to the source rate times the multiplication factor. The ratio of the “sample-in” and the “open beam” activities is the raw value of the multiplication. Several systematic corrections must then be applied to deduce the true multiplication in beryllium. Uncorrected values of the multiplication have been obtained for beryllium samples of four thicknesses. For beryllium thicknesses of 4.6, 12.0, 15.6, and 19.9 cm the multiplication values are 1.399, 1.928, 2.072, and 2.126, respectively. These values are affected by several systematic effects characteristic of the manganese bath. The values of these systematic corrections are established by a combination of calculation and experimental parameterization. The detailed calculations use the Monte Carlo program MCNP. The experimental values are in good agreement with those calculated from microscopic cross sections.