ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yuan Chen, Gang Chen, Rong Liu, Haiping Guo, Wenjiang Chen, Wenmian Jiang, Jian Shen
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1919-1924
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29622
Articles are hosted by Taylor and Francis Online.
Using the Total Absorption Method, the neutron multiplications in beryllium have been measured. A deionized water sphere with outer radius of 75 cm and a polyethylene sphere with outer radius of 69 cm were used as the total neutron absorbers. Neutron distributions in the spheres were measured using 235U fission chambers. The relative and the efficiency-determined methods were compared. Important sources of experimental errors were detailly analyzed. 4 groups of neutron multiplications in beryllium up to 14.85 cm thick for two total absorbers and two methods of measurement have been obtained and agreement among them is satisfactory. Measured results have been compared with ANISN calculations using data from ENDF/B-IV. It is shown that the differences between calculations and experiments are up to 15%.