ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Kumar, M.A. Abdou, Y. Ikeda, T. Nakamura
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1909-1918
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29621
Articles are hosted by Taylor and Francis Online.
The selection of materials and design options for fusion device components depends crucially on the level of radioactivity and decayheat induced in the components subject to D-T neutron irradiation. An experimental program was carried out to obtain decay γ emission spectra from samples of Fe, Ni, Cr, MnCu alloy, Ti, Mo, Zr, Ta, W, Si, Mg, Al, V, Nb, SS316, YBa2Cu3O7 and ErBa2Cu3O7, which were subjected to simulated fusion neutron environment. Cooling times obtained ranged from 10 min to 7 days. The experimental results have been analyzed using four leading radioactivity codes: DKRICF, REAC, RACC and THIDA. The integrated decay γ emission rates (over 100 KeV to 3 MeV) have been compared in addition to decay γ emission spectra. It is observed that : (i) generally, much better agreement is found between computed (C) and experimentally measured (E) values for integrated γ emission rates as against the detailed γ spectra, (ii) C/E ratios for integrated γ emission rates are found to range from 0.001 to 300, though most of the ratios cluster between 1 to 2. Significant discrepancies are obtained on C/E ratios for a number of cases for the four codes used above. Most of the observed discrepancies are due to (a) missing or wrong fundamental decay γ-ray data, e.g., (1) missing decay data in DKRICF for 186Ta, 187W, 181W, 90mY, 86Rb, 88Y, etc., (2) wrong decay γ-intensities for W products in THIDA, (b) inaccurate activation cross sections, e.g., for V, Zr, Mo in DKRICF, RACC, REAC, (c) errors on computed neutron energy spectra, (d) various experiment related factors, essentially poor counting statistics for weak neutron induced reactions.