ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Z. Youssef, A. Kumar, M. Abdou, M. Nakagawa, K. Kosako, Y. Oyama, T. Nakamura
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1891-1902
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29619
Articles are hosted by Taylor and Francis Online.
Effort in Phase IIC of the US/JAERI Collaborative Program on Fusion Neutronics was focused on performing integral experiments and post analyses on blankets that include the actual hetergeneities found in several blanket designs. Two geometrical arrangements were considered, namely multilayers of Li2O and beryllium in an edge-on, horizontally alternating configuration for a front depth of 30 cm, followed by the Li2O breeding zone (Be edge-on, BEO, experiment), and vertical water coolant channels arrangement in which one is placed behind the first wall and two other channels (width of 0.5 cm each) are placed at depths of 10 and 30 cm from the first wall (WCC experiment). The objectives are to experimentally verify the enhancement in tritium production in the first experiment and to examine the accuracy of predicting tritium production and other reaction rates around these heterogeneities in the two experiments. In the BOE system, it was shown that, with the zonal method to measure tritium production from natural lithium (Tn), the calculated-to-measured values (C/E) are 0.95 − 1.05 (JAERI) and 0.98 − 0.9 (U.S.), which is consistent with the results obtained in other Phases of the Program. In the WCC experiment, there is a noticeable change in C/E values for T6 near the coolant channels where steep gradients in T6 production are observed. The C/E values obtained with the Li-foils to measure T6 are better than those obtained by the Li-glass method. As for T7, calculations and measurements by NE213 method are within ± 15% in JAERI's analysis, but larger values (∼ 20–25%) are obtained in the U.S. analysis. Around heterogeneities, the prediction accuracy for T7 is better than that for T6. In both experiments, the prediction accuracy for high-threshold reactions [(e.g. 93Nb(n,2n)] is within ± 10% as obtained by both Monte Carlo and Sn codes, however, it was shown that the 58Ni(n,2n) cross-section of ENDF/B-V should be increased by 25–30% at high incident neutron energies to give better C/E values.