ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Z. Youssef, Y. Watanabe, A. Kumar, Y. Oyama, K. Kosako
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1843-1852
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29612
Articles are hosted by Taylor and Francis Online.
Performing integral experiments with a 14 MeV line source offers better simulation to the neutron source conditions (in terms of energy and angular distribution) of the toroidal plasmas in Tokamaks. Because of the linearity of the neutron transport equation, a line source can be simulated by superimposing results from many point sources aligned on one line, provided the number of these point sources is large. The simulation was experimentally realized at the FNS facility within the USDOE/JAERI Collaborative Program on Fusion Neutronics. In this paper, the theoretical aspects of a line source simulation are discussed. Specifically, analytical results for achieving this simulation by continuously moving a point source of speed V within a distance of length 2L; [continuous operation (CO.) mode] are compared to results obtained from several point sources located at discrete number of locations within the distance 2L [stepwise operation (S.O.) mode]. In the C.O. mode it was shown that for activation measurements, ideal simulation to a line source of length 2L with a point source moving at speed V could be achieved, provided the decay constant λ of the activated product satisfies the condition λ.(2L/V) << 1. In the S.O. mode, the number of point source locations, the distance from the simulated line source where the neutron radiation effects are measured, and the type of reactions (threshold vs. non-threshold) considered are important factors in determining the degree of simulation. For example, it was shown that better simulation can be achieved if the source locations are chosen to be at points that are directly related to the roots xi's of the Gauss-Legendre set PN(xi)=0, where N is the number of source locations. It was shown that larger number of point sources are needed to reproduce the line source effects on threshold-type reactions [e.g. 7Li(n,n'α)t] than on non-threshold reactions [e.g. 6Li(n,α)t]. Several transport calculations were also performed to study the degree of simulation from multiple point sources on the characteristics of the test assembly used in Phase IIIA of the program. In particular, the anisotropy of the incident neutron source arising from the structure of the target assembly, coolant channel, and water coolant was studied and compared to the case of isotropic point sources. It was shown that using N ≥ 20 points is adequate to the analysis of Phase III.A experiments.