ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Diablo Canyon completes dry storage campaign, seeks ISFSI license renewal
Holtec International announced that it has completed the campaign to transfer Diablo Canyon’s spent nuclear to dry storage ahead of its planned schedule, paving the way for the continued operation of the central California nuclear power plant.
J. Q. Ling W. D. Booth, R. Carrera, D. Tesar
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1823-1827
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29609
Articles are hosted by Taylor and Francis Online.
A remote system is considered for the in-vessel maintenance of the IGNITEX device. The specified maintenance tasks include: inspection, coating repair of the first wall, and cleaning of the vacuum vessel. In this paper the conceptual design of the in-vessel remote maintenance system (IVRMS) is presented. The IVRMS consists of a manipulator chain, a series of dedicated tools as end-effectors, a control system, and a delivery system. A manipulator of snake type with 11 degrees of freedom (DOF), consisting of a toroidal chain (6 links) and a poloidal chain (3 links), is used to provide 90° toroidal reach and 360° poloidal reach in the IGNITEX vacuum vessel. The mechanical structure design of the manipulator uses light weight and compact actuator modules and carbon fiber materials for the links. The interface of the IVRMS with the IGNITEX system is described. A system control layout including the hardware and software architecture is discussed. The concept and implementation of this design provides general features for in-vessel remote maintenance of a small fusion tokamak.