ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. R. Walthers, E. M. Jenkins, D. W. Sedgley, T. H. Batzer, S. Konishi, S. O'Hira, Y. Naruse
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1811-1813
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29606
Articles are hosted by Taylor and Francis Online.
In 1988, a prototypical vacuum system was added to the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Since then various pumping scenarios, which might be expected in a fusion reactor, have been performed without any serious shortcomings being apparent in the use of compound cryopumps as reactor high vacuum pumps. Last year, the question of whether a compound pump was necessary was addressed in a pair of runs in which deuterium helium mixtures were pumped on a single 4K activated charcoal panel. In these tests, the condensing stage of the pump was maintained at 77K and did not contribute to pumping either deuterium or helium. Results were very encouraging: in both tests the charcoal readily pumped helium until a max loading of 0.4 T 1 cm−2 of helium on charcoal was attained. Helium speed was not affected by deuterium which may have been pumped by either a condensing or sorbing mechanism or by a combination of both. In addition, the helium loading at saturation was 0.4 T 1 cm−2 even though the D2/He ratio was doubled between runs. Conjecture about why the charcoal helium capacity was constant led to the pump operation described in this paper. It was felt that measurement of helium capacity after careful deuterium preloads might help to explain the mechanism involved in co-pumping of a condensible and a noncondensible on a single 4K cryosorber surface. This paper presents the results of series of helium capacity runs preceded by a range of deuterium preloads and attempts to explain the mechanism involved.