ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
U.S. nuclear capacity factors: Stability and energy dominance
Nuclear generation has inertia. Massive spinning turbines keep electricity flowing during grid disturbances. But nuclear generation also has a kind of inertia that isn’t governed by the laws of motion.
Starting—and then finishing—a power reactor construction project requires significant upfront effort and money, but once built a reactor can run for decades. Capacity factors of U.S. reactors have remained near 90 percent since the turn of the century, but it took more than a decade of improvements to reach that steady state. The payoff for nuclear investments is long-term and reliable.
A. C. Janos, M. Corneliussen. D. K. Owens, M. Ulrickson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1806-1810
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29605
Articles are hosted by Taylor and Francis Online.
The plasma-facing wall in the Tokamak Fusion Test Reactor (TFTR) is covered in large part by a bumper limiter. The limiter extends the full 360° toroidally and ±60° with respect to the midplane on the small-majorradius side. The limiter is the primary power-handling surface of the first wall. The heat-distribution over the two-dimensional surface of the bumper limiter during high-power neutral-beam heated discharges is determined by using a large array of thermocouples distributed around the entire limiter. The heat distribution for normal high-power neutral-beam heated discharges is not very different from that for ohmic discharges. Large variations in heat loading are found, both poloidally and toroidally, even though the limiter was aligned, at the midplane, to within 0.5 mm of a true circle. The heat distribution for discharges which exhibited carbon blooms are compared to otherwise identical discharges which did not show blooms. The heat distribution of a particularly high-power disruptive discharge is examined to determine why recovery from this discharge was difficult.