ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. A. Ordonez, W. D. Booth, R. Carrera, R. Mohanti, M. E. Oakes
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1783-1788
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29601
Articles are hosted by Taylor and Francis Online.
Accurate estimates of first-wall erosion in a compact fusion ignition experiment are important for the design of the first-wall system and its maintenance. Because of maintenance requirements and thermal response considerations, a smooth wall represents a good candidate for the first-wall. This type of wall is considered in an analysis of first-wall erosion in the IGNITEX high-field ignition tokamak. A poloidal model of the scrape-off layer is used with a new sputtering model to investigate the distribution of first-wall erosion and impurity penetration into the plasma. Estimates of erosion values at the wall during disruptions are calculated both with and without vapor. Vapor shielding effects are found to be significant. The effect of the thermal quench duration is analyzed and various low Z first wall materials are considered.