ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. A. Koski, R. D. Watson, P. L. Goranson, A. M. Hassanein, J. C. Salmonson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1729-1735
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29591
Articles are hosted by Taylor and Francis Online.
Critical Heat Flux (CHF), also called burnout, is one of the major design limits for water-cooled divertors in tokamaks. Another important design issue is the correct thermal modeling of the divertor plate geometry where heat is applied to only one side of the plate and highly subcooled flow boiling in internal passages is used for heat removal. This paper discusses analytical techniques developed to address these design issues, and the experimental evidence gathered in support of the approach. Typical water-cooled divertor designs for the International Thermonuclear Experimental Reactor (ITER), where peak divertor heat fluxes as high as 15 MW/m2 are expected, are analyzed, and design margins estimated. Peaking of the heat flux at the tube-water boundary is shown to be an important issue, and design concerns which could lead to imposing large design safety margins are identified. The use of flow enhancement techniques such as internal twisted tapes and fins are discussed, and some estimates of the gains in the design margin are presented. Finally, unresolved issues and concerns regarding hydraulic design of divertors are summarized, and some experiments which could help the ITER final design process identified.