ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
K. A. Niemer, J. G. Gilligan, C. D. Croessmann, A. C. England, D. L. Hillis
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1717-1723
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29589
Articles are hosted by Taylor and Francis Online.
Four detection probes were designed with the PTA code package and fabricated to study energy deposition, temperature rise, and damage to plasma facing components from runaway electrons in the Advanced Toroidal Facility, Oak Ridge National Laboratory. The PTA code package is a unique application of PATRAN, the Integrated TIGER Series, and ABAQUS for modeling high energy electron impact on magnetic fusion components and materials. Two of the probes were made of stainless steel, one of graphite, and one of molybdenum. They were inserted one at a time on the magnetic axis of ATF during field ramps. Each probe had two thermocouples to measure temperature increases. One of the stainless steel probes had activation foils to detect photonuclear reactions. Analysis of the experiment concluded that runaways on the order of 10 MeV exist in ATF. Damage to the materials was in the form of melting and ablation. The graphite probe survived with less damage than the other probes.