ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
T. Uda, K. Okuno, S. O'Hira, Y. Naruse
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1651-1656
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29578
Articles are hosted by Taylor and Francis Online.
To study the application of laser Raman spectroscopy to analysis fusion fuel processing gas, six hydrogen isotopes were experimentally measured. Raman spectra of these mixture gases showed that the useful lines for quantitative analysis are Stokes rotations below 1000 cm−1, with representative lines for H2, HD, D2, HT, DT and T2 being 587, 443, 415, 395, 250 and 200 cm−1 respectively. The absolute Raman intensity ratio was estimated as H2:HD:D2:HT:DT:T2 = 100:58:47:46:36:41. With the laser wavelength of 488 nm, power of 700 mW and using a multiple pass system, the detection limit for H2 was 10 Pa, which was the equivalent of 100 ppm in concentration. As a remote sensing technology, the optical fiber was verified as applicable for transferring the irradiation laser beam.