ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
J. Mitsui, Y. Okada, F. Sakai, T. Ide, K. Hirata, T. Yamanishi, K. Okuno, Y. Naruse, I. Yamamoto, A. Kanagawa
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1646-1650
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29577
Articles are hosted by Taylor and Francis Online.
An experiment on the separation of hydrogen isotopes has been carried out by using a thermal diffusion column with a “cryogenic-wall” cooled by liquid nitrogen. The separation factor was compared with that of a ordinary column cooled by water, and the separation factor for the “cryogenic-wall” column is higher than that for the “water cooled wall” column. Moreover, the separation factor obtained by a 473 K operation of the hot wire in the “cryogenic-wall” system was found to be greater than that by 1073 K operation. Probably because the isotopic exchange reaction between H2 and D2 was suppressed in 473 K operation; there was no HD component observed in this case, while an equilibrium amount of HD component was immediately detected in 1073 K operation.