ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
D. E. Baker, J. M. Miller, T. Kurasawa, O. D. Slagle
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1640-1645
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29576
Articles are hosted by Taylor and Francis Online.
The BEATRIX-II irradiation experiment is an in-situ tritium recovery experiment being carried out in the Fast Flux Test Facility (FFTF) reactor to evaluate the tritium release characteristics of fusion solid breeder materials. A sophisticated tritium gas handling system has been developed to continuously monitor the tritium recovery from the specimens and facilitate tritium removal from the experiment's sweep gas flow stream. The in-situ recovery experiment accommodates two different in-reactor specimen canisters with individual gas streams and temperature monitoring/control. Ionization chambers have been specifically designed to respond to the rapid changes in the tritium release rate at the anticipated tritium concentrations. Two ceramic electrolysis cells have proved effective in reducing the moisture in the gas streams to hydrogen/tritium. A tritium getter system, capable of reducing the tritium level by a factor greater than 4000, is used to reduce the tritium in the sweep gas to a level acceptable for release.