ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R.S. Matsugu, J.C. Lehman, L. Borowski, P. Ladd
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1634-1639
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29575
Articles are hosted by Taylor and Francis Online.
A Tritium Filling Station to charge Inertial Confinement Fusion laser target microballoons with an equimolar mixture of tritium and deuterium has been designed, fabricated and pre-commissioned. The University of Rochester Laboratory for Laser Energetics will use the apparatus to produce targets for irradiation by their OMEGA glass laser. Microballoons are filled by diffusion through their walls. Each microballoon will hold about 5 millicuries of tritium in a deuterium-tritium mix at pressures of up to 15,000 kpa (2,200 psia). The maximum system tritium inventory is 10,000 curies.a Tritium and deuterium are stored in uranium beds. After retrieval from the beds, the deuterium-tritium mixture is assayed and transferred to the microballoon charging vessel via a unique palladium diffuser regulator. All components are housed in an inert atmosphere glove box with a getter-based purification system. The system design basis is presented with a description of mechanical and electrical components. Experience with the manufacture of tritium compatible equipment and subsequent system shop testing is described.