ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Carrera, W. D. Booth, J. L. Anderson, T. Bauer, D. Coffin, T. A. Parish†
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1629-1633
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29574
Articles are hosted by Taylor and Francis Online.
This paper outlines the preliminary conceptual design of a minimum—cost tritium system for a basic ignition experiment whose objective is to produce and control fusion ignited plasmas for scientific study. A system without tritium recycling and tritium reprocessing is envisioned. The fueling requirements can be satisfied by using a tritium storage tank with 20 kCi absorbed in a uranium bed which will be delivered to the facility every month (about 100 ignition pulses). Fueling needs will be supplied by thermal heating of the uranium bed and subsequent gas puffing of the tritium into the tokamak vacuum vessel. A modular vacuum pumping system is considered (6 × 880 ℓ/sec). Tritiated liquid effluents are eliminated by using oilless—bearing pumps. A thin carbon film is applied by glow discharge over the first wall to contain the tritium in the plasma chamber (by saturating the C film). The overall cost of the tritium system is estimated to be less than $3 million.