ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. R. Fox, A. B. Hull, T. F. Kassner
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1619-1628
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29573
Articles are hosted by Taylor and Francis Online.
Susceptibility of Types 316NG, 316, and 304 stainless steels (SS) to stress corrosion cracking was investigated in slow-strain-rate tests (SSRTs) in oxygenated water that simulates important parameters anticipated in first-wall/blanket systems. The water chemistry was based on a computer code that yielded the nominal concentrations of radiolytic species produced in an aqueous environment under conditions expected in the International Thermonuclear Experimental Reactor (ITER). Actual SSRTs were performed in a less benign, more oxidizing reference environment at temperatures of 52 to 150°C. Predominantly ductile fracture was observed in Type 316NG and nonsensitized Types 316 and 304 SS SSRT specimens that were strained to failure in a reference ITER water chemistry. The failure behavior of Type 304 SS specimens, heat-treated to yield sensitization values of 2, 3, and 20 Coulomb (C)/cm2 by the electrochemical potentiokinetic reactivation technique, demonstrated that the degree of sensitization dramatically affected susceptibility to intergranular stress corrosion cracking. Ranking for resistance to stress corrosion cracking in simulated ITER water by electron microscopy and SSRT parameters, i.e., failure time, ultimate strength, total elongation, and stress ratio, is 304 SS (EPR = 20<2 C/cm2)<316NG SS.