ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. G. Clemmer, D. K. Sze, P. E. Blackburn, E. VanDeventer, V. A. Maroni
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1612-1618
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29572
Articles are hosted by Taylor and Francis Online.
A 2:1 mixture of LiF and BeF2 (FLIBE), is a potential tritium breeder material for fusion reactors, in particular, the Advanced Safe Pool Immersed Reactor (ASPIRE). A limited experimental campaign was conducted in an effort to test the postulates of the ASPIRE concept: namely, that MoF6 is effective in controlling the tritium species by maintaining the TF form and that MoF6 can serve as a source to plate out Mo on surfaces, thereby making the FLIBE system compatible with the corrosive TF. It was demonstrated experimentally that successive additions of MoF6 achieved quantitative (i.e., greater than 99.7%) conversion of H2 to HF. Thus, MoF6 is effective in controlling the tritium species. The degree of conversion of H2 to HF demonstrates that HF does not attack MO to form H2. This supports the postulate that the system is compatible with Mo. Thus, if it were possible to plate out and maintain a coating of Mo on all surfaces in contact with the FLIBE system, the ASPIRE concept could work. Thermodynamic calculations also confirmed that MoF6 should be capable of quantitatively (>99.9%) converting H2 to HF. There is both experimental and theoretical evidence that a number of MoFx species are present in both the gas phase and the FLIBE solution.