ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Badawi, A.R. Raffray, A. Ying, M.A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1532-1537
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29559
Articles are hosted by Taylor and Francis Online.
This paper presents an analysis of the tritium release and inventory in the US-ITER solid breeder blanket, based on the MISTRAL code. Since the effect of LiOT formation and precipitation at low temperature can be quite important in Li2O, the selected solid breeder for the blanket, these processes have to be accounted for in the calculations. A simple way of estimating the LiOT precipitation as a function of temperature and moisture partial pressure was added to MISTRAL by including the calculations of T2O, H2O and HTO concentrations in the pore, in addition to T2, H2 and HT. The analysis was carried out for both steady state and transient cases. The transient cases are based on the given burn and dwell times during the Physics and Technology Phases and the corresponding temperature profile and tritium generation history in the solid breeder region. For the steady state case, a tradeoff analysis is done for the helium purge flow rate, based on an acceptable tritium inventory which imposes a lower limit on the purge flow rate and an acceptable purge pressure drop which imposes a higher limit on the purge flow rate.