ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. T. Hogan, N. A. Uckan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1504-1508
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29554
Articles are hosted by Taylor and Francis Online.
The MHD stability limits to the operational space for the International Thermonuclear Experimental Reactor (ITER) have been examined with the PEST ideal stability code. Constraints on ITER operation have been examined for the nominal operating scenarios and for possible design variants. Rather than relying on evaluation of a relatively small number of sample cases, the approach has been to construct an approximation to the overall operational space and to compare this with the observed limits in high-β tokamaks. An extensive database with ∼20,000 stability results has been compiled for use by the ITER design team. Results from these studies show that the design values of the Troyon factor (g ∼ 2.5 for ignition studies and g ∼ 3 for the technology phase), which are based on present experiments, are also expected to be attainable for ITER conditions, for which the configuration and wall-stabilization environment differ from those in present experiments. Strongly peaked pressure profiles lead to degraded high-β performance. Values of g ∼ 4 are found for higher safety factor (qψ ≥ 4) than that of the present design (qψ ∼ 3). Profiles with q(0) < 1 are shown to give g ∼ 2.5, if the current density profile provides optimum shear. The overall operational spaces are presented for g-qψ, qψ-li, q-αp, and li-qψ.