ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
N. A. Uckan, J. T. Hogan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1499-1503
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29553
Articles are hosted by Taylor and Francis Online.
The confinement capability of ITER was examined for a number of operational scenarios. The reference ITER physics baseline scenario (I = 22 MA) allows ignited burn under H-mode conditions [τE(H-mode) ∼ 2 × τE(L-mode)]. At higher currents (I = 25–28 MA) at which ITER can operate for limited pulse duration, there is an increased ignition margin if low-q operation proves acceptable. A factor of 2 reduction in helium ash concentration (from the baseline value of 10% to 5%) in the reference ITER scenario has about the same impact on ignition capability as increasing the plasma current by about 15% (from the baseline value of 22 MA to ≥25 MA). It might be possible to further optimize the ignition capability of ITER if some of the limits on operational boundaries can be relaxed by tailoring plasma profiles.