ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Richard F. Mattas
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1487-1492
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29551
Articles are hosted by Taylor and Francis Online.
The performance of the ITER first wall and divertor have been analyzed using the Fusion Lifetime Prediction (FLIP) code. The code is a one-dimensional finite difference code which calculates the changes in properties, stress, strain, and temperature overtime for plate structures. The results indicate that the first wall should be able to accommodate up to ∼0.6 MW/m2 heat flux for the reference operating conditions. At much higher levels, fatigue and cracking are predicted to lead to rapid failure. The loss of ductility in irradiated austenitic stainless steel at low temperatures is a concern which may limit operating life. The results of the divertor analysis show that a bare, 2 mm thick plate of Nb-1Zr or TZM can accommodate fluxes of 15–20 MW/m2 for the ITER conditions. Duplex structures composed of 2 mm of tungsten on 2mm of Nb-1Zr or TZM are limited to 8–10 MW/m2.