ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Y. Ying, A. R. Raffray, M. A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1481-1486
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29550
Articles are hosted by Taylor and Francis Online.
This paper addresses the thermal transport issues associated with a loss of flow accident (LOFA) for US ITER solid breeder blanket. Two LOFA scenarios were considered. For a LOFA due to a simultaneous catastrophic pump failure, the coolant temperature reaches its boiling point within only about 15 – 20 seconds. This scenario appears extremely unlikely and should be better characterized through a probability risk assessment study in order to determine to what extent corrective actions such as the use of backup pump should be taken. For a LOFA due to loss of power to the coolant pumps, the resulting flow transient is characterized by considering the effect of fluid inertia and pump inertia. Once a determination of the flow coastdown has been made, the temperature histories of blanket elements and coolant are analyzed using lumped parameter techniques. The results of the analyses indicate that the rate of coolant temperature rise due to the heat (generated and/or stored) transferred from the solid breeder area is strongly dependent on the transient flow behavior. If the coolant pump can be designed with a sufficiently large pump inertia (with an inertia time constants of about 1.5 s or more), the coolant temperature can stay under its boiling point for several minutes to allow for corrective action to be implemented. As an added safety measure, it seems prudent to include in the design a system of expansion volumes and/or safety valves for accommodating coolant pressure transients.