ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. D. Galambos, Y-K. M. Peng, L. J. Perkins
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1463-1468
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29547
Articles are hosted by Taylor and Francis Online.
The nominal International Thermonuclear Experimental Reactor (ITER) configuration is a double-null (DN) divertor, which requires precise plasma vertical position control. Vertical displacements of only about 1 cm (out of a plasma height of 4.7 m) are estimated to destroy the up/down symmetric distribution of power flow to the divertor plates. As an alternate configuration to avoid this difficulty, we look at the single-null (SN) option, where all the charged power flow is deposited on the lower divertor plate. The primary consideration in this study is that of technology phase performance (maximum neutron wall load) for the ITER divertor heat load and plasma constraints. With regard to the divertor heat loads, the SN case has the advantages of (a) longer scrape-off field line connection lengths and (b) more vertical space, which allows a greater spreading of the heat load on the divertor plates. These advantages offset the SN case disadvantage of having fewer divertor plates, and therefore the potential for higher heat fluxes for a given core plasma condition. The attainable wall loads for the SN and DN divertors are found to be similar for steady-state and hybrid operation scenarios.