ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. D. Galambos, Y-K. M. Peng, L. J. Perkins
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1463-1468
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29547
Articles are hosted by Taylor and Francis Online.
The nominal International Thermonuclear Experimental Reactor (ITER) configuration is a double-null (DN) divertor, which requires precise plasma vertical position control. Vertical displacements of only about 1 cm (out of a plasma height of 4.7 m) are estimated to destroy the up/down symmetric distribution of power flow to the divertor plates. As an alternate configuration to avoid this difficulty, we look at the single-null (SN) option, where all the charged power flow is deposited on the lower divertor plate. The primary consideration in this study is that of technology phase performance (maximum neutron wall load) for the ITER divertor heat load and plasma constraints. With regard to the divertor heat loads, the SN case has the advantages of (a) longer scrape-off field line connection lengths and (b) more vertical space, which allows a greater spreading of the heat load on the divertor plates. These advantages offset the SN case disadvantage of having fewer divertor plates, and therefore the potential for higher heat fluxes for a given core plasma condition. The attainable wall loads for the SN and DN divertors are found to be similar for steady-state and hybrid operation scenarios.