ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Y. Gohar, M. Billone, H. Attaya, M. Sawan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1457-1462
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29546
Articles are hosted by Taylor and Francis Online.
The U.S. Solid Breeder Blanket is designed to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Safety, low tritium inventory, reliability, flexibility cost, and minimum R&D requirements are the other design criteria. To satisfy these criteria, the produced tritium is recovered continuously during operation and the blanket coolant operates at low pressure. Beryllium multiplier material is used to control the solid-breeder temperature. Neutronics and thermal design analyses were performed in an integrated manner to define the blanket configuration. The reference parameters of ITER including the operating scenarios, the neutron wall loading distribution and the copper stabilizer are included in the design analyses. Several analyses were performed to study the impact of the reactor parameters, blanket dimensions, material characteristics, and heat transfer coefficient at the material interfaces on the blanket performance. The design analyses and the results from the different studies are summarized.