ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mohamed A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1439-1451
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29544
Articles are hosted by Taylor and Francis Online.
ITER is envisioned to operate in two phases: the Physics Phase, ∼ 6 yrs, is devoted to the physics issues followed by the Technology Phase, ∼ 8 yrs, used mainly for technology testing. The nuclear testing program of ITER is intended to provide powerful, albeit partial, demonstration of the ultimate potential of a fusion blanket. The ITER test group, which consists of a number of ITER designers and experts from the home teams concerned with the long-term development of fusion technology, has carried out several tasks, including: 1) Definition of the testing requirements on the major parameters of ITER; 2) Definition of the test program (time-space matrix and priorities of tests); 3) Engineering design of test modules; 4) Ancillary equipment to support test module operation and 5) Allocation of available test space among countries. Recommended ITER parameters are: neutron wall load ∼ 1 MW/M2, lifetime neutron fluence ∼ 3 MW y/m2 and several periods of continuous operation (∼ 100% availability with back to back pulses or steady state) of ∼ 1 to 2 weeks each. The requirements on plasma burn and dwell times are quantified. Steady state operation is a desirable goal. If this goal cannot be achieved, a burn time of ∼ 1 to 3 hours, depending on the breeder temperature, is needed for tritium release tests in solid breeders. The requirements for ancillary equipment outside the torus, required to support the test modules (e.g., heat rejection systems, tritium processing, etc.) are extensive and they substantially influence the overall design engineering. The space available for testing in ITER is not sufficient for 4 complete programs (one for each country). An effective strategy for allocation of test ports among countries is being evolved. It involves a combination of collaboration on some tests, and allocation of testing space and time by party.