ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Mohamed A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1439-1451
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29544
Articles are hosted by Taylor and Francis Online.
ITER is envisioned to operate in two phases: the Physics Phase, ∼ 6 yrs, is devoted to the physics issues followed by the Technology Phase, ∼ 8 yrs, used mainly for technology testing. The nuclear testing program of ITER is intended to provide powerful, albeit partial, demonstration of the ultimate potential of a fusion blanket. The ITER test group, which consists of a number of ITER designers and experts from the home teams concerned with the long-term development of fusion technology, has carried out several tasks, including: 1) Definition of the testing requirements on the major parameters of ITER; 2) Definition of the test program (time-space matrix and priorities of tests); 3) Engineering design of test modules; 4) Ancillary equipment to support test module operation and 5) Allocation of available test space among countries. Recommended ITER parameters are: neutron wall load ∼ 1 MW/M2, lifetime neutron fluence ∼ 3 MW y/m2 and several periods of continuous operation (∼ 100% availability with back to back pulses or steady state) of ∼ 1 to 2 weeks each. The requirements on plasma burn and dwell times are quantified. Steady state operation is a desirable goal. If this goal cannot be achieved, a burn time of ∼ 1 to 3 hours, depending on the breeder temperature, is needed for tritium release tests in solid breeders. The requirements for ancillary equipment outside the torus, required to support the test modules (e.g., heat rejection systems, tritium processing, etc.) are extensive and they substantially influence the overall design engineering. The space available for testing in ITER is not sufficient for 4 complete programs (one for each country). An effective strategy for allocation of test ports among countries is being evolved. It involves a combination of collaboration on some tests, and allocation of testing space and time by party.