ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
G. R. Smolik, S. J. Piet, R. M. Neilson, Jr.
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1398-1402
Safety | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29538
Articles are hosted by Taylor and Francis Online.
Postulated long-term loss of coolant accidents (LOCA) for the International Thermonuclear Experimental Reactor (ITER) may involve the ingress of air or steam into the plasma chamber. Reactions of these gases with the hot plasma facing components will cause oxidation, transport, and release of activated species. To predict radioactivity releases, we measured volatility rates from a tungsten alloy. Tests were performed in air or steam between 600 and 1200°C for 1 to 20 h. We used these volatilization rates to calculate radioactivity releases from severe hypothetical ITER accidents. We found that both the first wall and divertor plates fabricated from or coated with tungsten may release significant radioactivity in severe hypothetical LOCAs. Without radioactivity confinement or credit for in-plant deposition, the site boundary Early Effective Dose Equivalent (EDE) acceptance criterion of 100 mSv (10 rem) is exceeded by a factor of about thirty in either an air or steam accident. With radioactivity confinement and reference LOCA conditions of 700°C for the divertor plates and 600°C for the first wall, air and steam provide doses of 50 and 30 mSv, respectively. We conclude that tungsten-bearing components are not attractive from a passive safety standpoint. With radioactivity confinement and reference conditions, however, these components can meet the anticipated regulatory criterion.