ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
G. R. Smolik, S. J. Piet, R. M. Neilson, Jr.
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1398-1402
Safety | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29538
Articles are hosted by Taylor and Francis Online.
Postulated long-term loss of coolant accidents (LOCA) for the International Thermonuclear Experimental Reactor (ITER) may involve the ingress of air or steam into the plasma chamber. Reactions of these gases with the hot plasma facing components will cause oxidation, transport, and release of activated species. To predict radioactivity releases, we measured volatility rates from a tungsten alloy. Tests were performed in air or steam between 600 and 1200°C for 1 to 20 h. We used these volatilization rates to calculate radioactivity releases from severe hypothetical ITER accidents. We found that both the first wall and divertor plates fabricated from or coated with tungsten may release significant radioactivity in severe hypothetical LOCAs. Without radioactivity confinement or credit for in-plant deposition, the site boundary Early Effective Dose Equivalent (EDE) acceptance criterion of 100 mSv (10 rem) is exceeded by a factor of about thirty in either an air or steam accident. With radioactivity confinement and reference LOCA conditions of 700°C for the divertor plates and 600°C for the first wall, air and steam provide doses of 50 and 30 mSv, respectively. We conclude that tungsten-bearing components are not attractive from a passive safety standpoint. With radioactivity confinement and reference conditions, however, these components can meet the anticipated regulatory criterion.