ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. Durrer, T.A. Parish, G. Schlapper, R. Carrera
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1337-1341
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29528
Articles are hosted by Taylor and Francis Online.
The IGNITEX experiment is being designed to study the physics of ignited plasmas. Over the service lifetime of the device (two years), it is expected to be pulsed 2,000 times with each pulse producing 150 MW of DT fusion power for approximately five seconds. Neutrons from each pulse will activate the magnet structure, liquid nitrogen in the cryostat and test cell air. Radioactive effluents from IGNITEX will primarily result from activated air, activated liquid nitrogen, and tritium. To provide a perspective for evaluating the doses resulting from the gaseous effluents from IGNITEX, the doses from the gaseous effluents from a 1 MW fission research reactor were also calculated.For both facilities, the primary effluents are airborne. Two dose receptor locations were assumed. The first was taken to be the building nearest to the facility and it was taken to be 400 m distant. The second was the nearest residence and it was taken to be 1.2 km distant. For the dose calculations, the air stability was assumed to be neutral and the dose receptors were assumed to be in the direction of a 4.5 m/sec prevailing wind. All releases were taken to be at ground level. The equations used to calculate the annual doses were taken from Regulatory Guide 1.109. The gaseous effluents from IGNITEX were assumed to consist of 41Ar, 13N, 16N, 14C, and 3H. Effluents from the fission research reactor consisted of 41Ar, gaseous and semi-volatile fission products. Each facility's dose was compared to the 10CFR50 Appendix I limits. In each dose category, with the exception of the thyroid dose the dose resulting from the operation of IGNITEX were more than that of the fission reactor. The increased doses were due primarily to the activated nitrogen releases.