ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P.G. Papanikolaou, C.K. Choi
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1317-1321
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29524
Articles are hosted by Taylor and Francis Online.
The potential for the field-reversed configuration (FRC) as a fusion reactor concept, in particular as a candidate for an alternate concept device, depends on its confinement characteristics. The advantages of an FRC plasma are that it is easily produced and has low impurity concentrations. Currently, the electron and heat loss rates are higher than those predicted by Coulomb collisions. Analyses using the local approximation predict that LHD waves should exist near the separatrix, but experiments have failed to detect them. This local approximation may not be valid in two regions: near the field null, where ion orbits may be large and near the separatrix, where the equilibrium magnetic field and the plasma density can change appreciably. In this papaer we develop a method to analyze the stability of a 1-D FRC that takes the sharp gradients near the separatrix and the effect of the field null into account. This finite element code seeks a solution to the linearized Maxwell-Vlasov equations in the form of eigenvalues to a dispersion matrix. The dispersion matrix contains all the information pertaining to the stability of the plasma.