ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
P.G. Papanikolaou, C.K. Choi
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1317-1321
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29524
Articles are hosted by Taylor and Francis Online.
The potential for the field-reversed configuration (FRC) as a fusion reactor concept, in particular as a candidate for an alternate concept device, depends on its confinement characteristics. The advantages of an FRC plasma are that it is easily produced and has low impurity concentrations. Currently, the electron and heat loss rates are higher than those predicted by Coulomb collisions. Analyses using the local approximation predict that LHD waves should exist near the separatrix, but experiments have failed to detect them. This local approximation may not be valid in two regions: near the field null, where ion orbits may be large and near the separatrix, where the equilibrium magnetic field and the plasma density can change appreciably. In this papaer we develop a method to analyze the stability of a 1-D FRC that takes the sharp gradients near the separatrix and the effect of the field null into account. This finite element code seeks a solution to the linearized Maxwell-Vlasov equations in the form of eigenvalues to a dispersion matrix. The dispersion matrix contains all the information pertaining to the stability of the plasma.