ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
K. A. Werley, C. G. Bathke, R. A. Krakowski, R. L. Miller, J. N. DiMarco
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1266-1271
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29515
Articles are hosted by Taylor and Francis Online.
Essential to the achievement of economically compact fusion power cores is the radiation of a large fraction of the plasma heating power uniformly to the first wall, thereby assuring adequate longevity of the divertor impurity control system. The radiation of significant fractions of the heating power from the beta-limited core-plasma region in an RFP, however, requires a corresponding increase in the quality of (non-radiative) confinement. It is shown that radiating ≳ 70% of the total heating power from the core plasma of the TITAN compact reversed-field-pinch (RFP) reactor is possible with non-radiative confinement times that are a large factor (> 15) below classical confinement predictions and are within the present scaling relation based upon extrapolations of the existing RFP transport database. By comparison, the confinement in the ARIES-I tokamak reactor is within a factor of 2 of neo-classical predictions.