ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A.P. Colleraine, J.L. Luxon, the DIII-D Group
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1247-1256
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29513
Articles are hosted by Taylor and Francis Online.
The DIII-D Tokamak has become one of the major sources of physics and technology data for the design of future large machines such as ITER and CIT. In large part, this is because of its extremely flexible design and the ability to run tests or add new diagnostic devices with a minimum of down-time and expense. Fundamental plasma physics studies are still the major focus of our experimental program but, increasingly, we are looking at new ways to answer the complex fusion technology questions emerging from the design studies for the next-generation devices. Recent results have demonstrated world record beta plasmas, long quiescent H-mode operation, partial noninductive current drive using both neutral beam and rf power injection, single- and double-null divertor operation, and divertor particle- and heat-load management. The recently installed Advanced Divertor hardware will allow critical transport experiments to be run with independent control of the density. It will also permit the concept of dc helicity injection current drive to be tested. This paper summarizes our most important recent findings and also outlines a few of the many interesting problems that are now under study to address fusion technology questions.