ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. J. Johnson, W. F. Weldon, D. J. Wehrlen, M. D. Werst
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1199-1204
Ignition Device | doi.org/10.13182/FST91-A29506
Articles are hosted by Taylor and Francis Online.
The Center for Electromechanics has designed, fabricated, and is now operating a prototype of a full torus, 20 Tesla (T) on-axis, single turn, toroidal field (TF) magnet system powered by the Balcones Homopolar Generators (HPGs). This magnet system is part of the Ignition Technology Demonstration (ITD) program for the fusion ignition experiment (IGNITEX). The six HPGs connected to the prototype magnet in parallel are capable of producing a 9 MA, 150 ms, current pulse required for a 20 T ITD test. The diagnostic system for the prototype magnet is designed to determine strains, temperatures, and magnetic fields at several locations in the TF magnet. These values are used to verify numerical predictions by electromechanical and thermomechanical analyses. Operating conditions for the instrumentation inside the cryogenically cooled magnet are extreme; localized temperatures inside the magnet can rise from - 196°C to 200°C during the current pulse and the magnet field levels near the inner leg surface can rise to 30 T in 30 ms. The specifications, testing, and layout of the diagnostic and data acquisition systems for the ITD prototype are presented in this paper.