ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
B.A. Smith, Z. Piek, P. Thomas, R. Vieira
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1189-1193
Ignition Device | doi.org/10.13182/FST91-A29504
Articles are hosted by Taylor and Francis Online.
The status of the R&D program to evaluate low friction materials for use in the Compact Ignition Tokamak (CIT) is given. The goal is to provide material with a friction coefficient of 0.1 or lower at a 77 K interface between the central solenoid and the case of the toroidal field (TF) coil inner leg. The material must withstand 3000 machine pulses under a transverse compressive stress of about 207 MPa and be able to withstand relative surface motions of the order of 2 mm. A testing machine capable of providing 1.3 MN of compressive load and 0.44 MN of oscillating thrust in the direction of relative motion was prepared and is described in the paper together with the instrumentation and control system. Data can be taken at room temperature and at 77 K. Measured room temperature friction coefficients of the initial single stroke tests are plotted for twelve candidate materials as a function of compressive stress. All candidates exhibited friction coefficients below 0.1 for compressive stress above 172 MPa. Single stroke results on two candidates at 77 K showed friction coefficients higher than their room temperature values by a factor of about 3 at 44 MPa compression, with the coefficients tending toward their room temperature values as the compression was increased to 228 MPa. Of the seven candidates tested cyclically with a 5 mm stroke at 253 MPa and 77 K, only two types of Fiberslip materials met the requisite 3000 cycles. Friction coefficients for all materials are plotted as a function of the number of cycles.