ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
B.A. Smith, R.J. Thome, Z. Piek, M.M. Olmstead
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1183-1188
Ignition Device | doi.org/10.13182/FST91-A29503
Articles are hosted by Taylor and Francis Online.
The assembly features of the Compact Ignition Tokamak (CIT) require that the internal coils be modular in nature. Each of the four coils consists of six segments with each segment being U-shaped and integrated with each toroidal field (TF) coil's subassembly. The U-shape enables inter-connection of the segments to be made radially outward of the TF structure in a region serviceable by remote maintenance equipment. Turns in each internal coil segment must be jumpered to the corresponding turn in the adjacent segment. The design of the subassemblies which provide for turn jumpering and lead connection are described. Both employ twelve silver-plated, C15715 or C15725, alumina-dispersion-strengthened copper alloy pins at each turn electrical joint. Full-scale tests on single and multiple C15725 pins have been carried out with relative motion to demonstrate feasibility. Test results to date after 16,000 cycles of 1 mm mechanical motion along the pin axis have demonstrated the ability of each pin to carry the required 3333 A for 20 seconds with a temperature rise from 80 K to less than 300 K. Electrical tests conducted during the mechanical tests showed improved contact resistance with mechanical cycling and at higher currents. Preliminary tests on a modified pin design to reduce insertion force, and using C15715 material, have shown current carrying capability at least as good as the earlier design.