ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jun Feng, Frank A. McClintock, Rui Vieira, Regis M. Pelloux, Richard J. Thome
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1177-1182
Ignition Device | doi.org/10.13182/FST91-A29502
Articles are hosted by Taylor and Francis Online.
The conductor for the central solenoid of the Compact Ignition Tokamak (CIT) operates with a multiaxial stress condition in which the ratios of the principal stresses are not proportional during the operating cycle. The stresses arise from both the self-electromagnetic loads and interactions with the toroidal field coils. The latter primarily provide a radial compressive load which varies during a pulse. This paper presents the status of conductor evaluation and design criteria development. Analysis of the stress conditions during a pulse indicates that the bulk of the fatigue life damage is done during one portion of the total current scenario. This is based on the postulate that the multiaxial stress and lifetime condition can be characterized approximately by examining the worst combination of shear stress range with tensile stress normal to the shear plane at reversal. The latter is found by tracing the history of the principal shear stresses and their associated normal stresses for all three principal shear planes at the worst point in the coil. The analysis thus provides the operating conditions to be simulated in uniaxial and multiaxial tests from which lifetime correlations can be found for the conductor. Evaluation of existing multiaxial fatigue life data on Alloy 718 has led to a postulate for a criterion to be applied to the conductor. Uniaxial and biaxial data are being taken on candidate conductors to verify the postulated lifetime correlations. The primary candidates for the conductor are C15715 (an alumina-dispersion-strengthened copper) and a CuCrZr alloy. The conductor will be required in plate form, nominally 1-inch thick and 70-inches square. Tests have thus far only been conducted on specimens from subscale plates. The status of the test program and of the full-scale plate development program are given.