ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Uranium prices rise to highest level in more than two months
Analyst firm Trading Economics posted a uranium futures value of about $82.00 per pound on January 5—the highest futures value in more than two months.
In late October, it had listed a futures price of about $82.30/lb. By late November, the price had fallen to under $76.00/lb.
W. A. Walls, J. H. Gully, W. F. Weldon, H. H. Woodson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1154-1159
Ignition Device | doi.org/10.13182/FST91-A29499
Articles are hosted by Taylor and Francis Online.
The concept for a single-turn tokamak experiment IGNITEX1 makes possible the realization of a controlled, self-sustained fusion reaction in the near term with relative simplicity and low cost. The IGNITEX tokamak utilizes low-impedance toroidal field (TF) and poloidal field (PF) magnet systems which induce the high-level fields and currents required for fusion ignition. These magnet systems require power supplies that can meet strict operational conditions. Homopolar generators (HPGs) are well suited for operation of a single-turn tokamak because they are inherently high current, low-voltage machines which can kinetically store all the energy required for a pulsed discharge. The energy storage is accomplished in a compact manner by using high speed composite flywheel technology and provides the added advantage of keeping electrical grid power requirements very low. Finally, since HPGs are simple dc machines, their cost is low and rectifier systems are not necessary. In this paper, the HPG technologies to be utilized in a fusion ignition experiment are described. The various components, materials, and design considerations for the HPG current-collection systems are reviewed, including rotor slip ring, brushes, and actuators. Design, fabrication, and assembly techniques for the lightweight, composite, energy-storage flywheel are given. The status of these HPG technologies relative to IGNITEX power supply requirements are reviewed. The modes of operation of the TF and PF magnet systems are analyzed. Questions of reliability of operation, maintenance, and cost evaluation are also addressed. Finally, the construction and testing of a full-scale prototype IGNITEX HPG power supply module is proposed.