ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Stoenescu, T. Feng, J. Swanson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1127-1132
Ignition Device | doi.org/10.13182/FST91-A29494
Articles are hosted by Taylor and Francis Online.
An essential support system of the Compact Ignition Tokamak (CIT) is the Vacuum Vessel Heating/Cooling (H/C) System. The requirement for the design of the dual function H/C System is to initially provide sufficient input heat energy to raise the temperature of the vacuum vessel from a 21°C ambient temperature to the operating temperature of 340±10°C and subsequently provide sufficient heat removal capacity to limit the cooling period between plasma pulses to 1 hour. The H/C System currently proposed for the CIT vacuum vessel accomplishes both of these system objectives using a single gaseous helium system flowing through a series of ducts attached to the exterior surface of the vacuum vessel shell. The design requirements, duct arrangements, and design analyses for the preliminary H/C System design are identified.