ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
K. T. Hsieh, W.F. Weldon, M.D. Werst, E. Montalvo, R. Carrera
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1089-1094
Ignition Device | doi.org/10.13182/FST91-A29488
Articles are hosted by Taylor and Francis Online.
The Texas fusion ignition experiment (IGNITEX) device is a 20 T single turn coil tokamak designed to produce and control an ignited plasma using ohmic heating alone. As a baseline design, IGNITEX has a 1.5 m major radius and operates at a toroidal field (TF) of 20 T on-axis. The small version of IGNITEX (R = 1.2 m) represents the smallest, low cost experiment that can produce fusion ignition under the saturated Neo-Alcator energy confinement scaling. The large version of IGNITEX (R = 2.1 m) represents the smallest experiment that can produce fusion ignition using the most pessimistic extrapolation of the Goldston scaling in L-mode. The Ignition Technology Demonstration (ITD) program was initiated to design, build, and test the operation of a single turn, 20 T, TF coil powered by an existing 9 MA, HPG power supply system. The ITD TF coil is a 0.06 scale of the IGNITEX and is now operating at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). Data from the ITD experiment is used to confirm the complex computer model utilized for the IGNITEX design and analysis. In this paper, feasibility of the TF magnets is evaluated based on the electromechanical and thermomechanical considerations.